11.25Durabilidad y Deterioro de Materiales

64 HORAS

MATERIA: DURACION:

CREDITOS:

OBJETIVO: Desarrollar las bases necesarias para comprender el fenómeno corrosión. Aplicar los conocimientos aprendidos en problemas cotidiar prácticos. Comprender el proceso de deterioro general en los materiales	
TEMARIO	
 1 QUÍMICA BÁSICA 1.2 La naturaleza química. 1.2 Átomos, elementos y compuestos. 1.3 Modelo de Bohr. 1.4 Tabla periódica de los elementos. 1.5 Estado de oxidación. 1.6 Soluciones y concentraciones. 	6
 INTRODUCCIÓN A LA CORROSIÓN 2.1 Definición del Problema. 2.2 ¿Es la corrosión un Arte o una Ciencia? 2.3 Clasificación de los Procesos de corrosión. 2.4 Clasificación según el medio. 2.5 Clasificación según la forma. 2.6 Serie electromotriz y serie galvánica. 2.7 Importancia de la corrosión asociada al gasto generado. 	6
 CARACTERÍSTICAS DE LOS DISTINTOS TIPOS DE CORROSIÓN. 3.1 Clasificación de los distintos tipos de corrosión. 3.2 Corrosión generalizada. 3.3 Corrosión por picaduras. 3.4 Corrosión por intersticios. 3.5 Corrosión bajo tensiones. 3.6 Corrosión intergranular. 	6
4. ELECTROQUÍMICA BÁSICA. 4.1Electrodos. 4.2 Celdas electroquímicas. 4.3 Convenciones electroquímicas.	6
4. CORROSIÓN ELECTROQUÍMICA. 4.1Origen de la corriente eléctrica en una celda de corrosión. 4.2 Reacciones óxido-reducción.	6

DURABILIDAD Y DETERIORO DE MATERIALES

4.3 Potenciales de electrodo.4.4 Polarización.4.5 Polarización por transporte de carga.4.6 Polarización por difusión o transporte de masa.4.7 Polarización por cristalización, reacción y óhmica.	
 5. ELECTRODOS DE REFERENCIA. 5.1 Conversión entre diferentes electrodos de referencia. 5.2 Descripción de dos electrodos de referencia. 5.3 Potenciales del electrodo de trabajo. 5.4 Condiciones para el uso de electrodos de referencia. 	6
 6. FENÓMENOS DE POLARIZACIÓN. CINÉTICA DE LA REACCIÓN. 6.1 Ecuación de Nernst. 6.2 Teoría del potencial mixto. 6.3 Diagramas de Evans y curvas de polarización. 6.4 Concepto de potencial de corrosión y corriente de corrosión. 6.5 Transición activa/pasiva y pasividad. 6.6 Ruptura de la pasividad y comportamiento transpasivo. 6.7 Corrosión bimetálica. 6.8 Aplicaciones de los diagramas de Evans en temas selectos de corrosión. 	6
 7. PREDICCIÓN DE LA CORROSIÓN 7.1Termodinámica de la corrosión. 7.2 El electrodo reversible. 7.3 La ecuación de Nernst. 7.4 El potencial reversible. 7.5 El diagrama potencial-pH. 	6
 8. PASIVIDAD. 8.1 Definición. 8.2 Curvas de polarización. 8.3 Efecto concentración. 8.4 Efecto composición química. 8.4 Efecto pH. 	6
 9. FENÓMENOS DE CORROSIÓN DIRECTA. 9.1Oxidación a alta temperatura. 9.2 Diagramas de Ellingham. 9.3 Mecanismos del proceso de corrosión. 	6
 10. ESTUDIO DIRECTO DE LA CORROSIÓN CINÉTICA. 10.1 Leyes cinéticas de formación de óxidos. 10.2 Movilidad iónica. 10.3 Características físico-química de las películas de óxidos. 10.4 Óxidos tipo-p. 	10

10.5 Óxidos tipo-n.

METODOLOGÍA DE ENSEÑANZA- APRENDIZAJE:

Para el desarrollo exitoso de los temas incluidos en el programa de estudio, se llevarán a cabo las siguientes actividades:

- Exposición interactiva de temas en clase por parte del instructor (Pizarrón, pintarrón, proyector de transparencias, cañón proyector, etc.)
- Discusión en clase de tópicos de lectura asignados previamente.
- Utilización de computadoras en clase por parte de los alumnos, para manejar paquetes de software ilustrativos de los temas.
- Los alumnos desarrollarán un proyecto a lo largo del curso, siendo apoyados y dirigidos por el instructor en todas las fases de dicho proyecto.
- Los alumnos harán presentaciones en clase alusivas a su proyecto.
- Se invitará ocasionalmente a especialistas en algunos de los temas del curso para enriquecer el aprendizaje.

PROCEDIMIENTOS DE EVALUACIÓN DEL APRENDIZAJE DE LOS ALUMNOS:

La evaluación del alumno a lo largo del curso será de acuerdo a:

•	Exposiciones.	20%
•	Tareas y Resolución de problemas.	35%
•	Exámenes parciales	20%
•	Examen final.	25%

BIBLIOGRAFÍA:

BIBLIOGRAFÍA BÁSICA:

- NACE. Corrosion Basics An Introduction. 2004.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Piron, D.L. (1991). The electrochemistry of corrosion,; NACE. EUA
- Ávila, Javier / Genescá, Joan (1986). Más allá de la Herrumbre I y II, Fondo de Cultura Económica,. México.
- Fontana, Mars G. (1987). Corrosion Engineering. Mc Graw Hill, 1987. EUA